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Cover Caption: Advancing microarray technology from an endpoint assay to a kinetic
constant assay platform. Molecular targets expressing a variety of epitopes are immobilized in

the form of a large microarray on a chemically functionalized glass surface. Inset: By
incubating the microarray in a solution of a probe that specifically recognizes some of the

epitopes, the probes are then captured by the corresponding immobilized targets, causing the
surface mass density of the target region to change. Such a change leads to extra change in
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magnitude and phase (∆r and ∆δ) of an incident monochromatic light beam upon reflection
from the surface. These changes are label-free signatures of probe-target binding reactions. A

novel oblique-incidence reflectivity difference (OI-RD) scanning microscope (foreground)
directly measures ∆r and ∆δ in real time and enables simultaneous detection of ∼10,000

probe-target binding curves (background) in a single experiment. See “Simultaneous
measurement of 10,000 protein–ligand affinity constants using microarray-based kinetic
constant assays” by Landry et al., this issue, p. 250. Upper right chemical structure:

Theophylline. Cover design by Darryl Leja.
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Protein-Ligand Affinity Constants Using
Microarray-Based Kinetic Constant Assays
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ABSTRACT
Fluorescence-based endpoint detection of microarrays with 10,000 or

more molecular targets is a most useful tool for high-throughput pro-

filing of biomolecular interactions, including screening large molecular

libraries for novel protein ligands. However, endpoint fluorescence data

such as images of reacted microarrays contain little information on

kinetic rate constants, and the reliability of endpoint data as measures

of binding affinity depends on reaction conditions and postreaction

processing. We here report a simultaneous measurement of binding

curves of a protein probe with 10,000 molecular targets in a microarray

with an ellipsometry-based (label-free) optical scanner. The reaction

rate constants extracted from these curves (kon, koff, and ka = kon/koff)

are used to characterize the probe-target interactions instead of the

endpoints. This work advances the microarray technology to a new

milestone, namely, from an endpoint assay to a kinetic constant assay

platform. The throughput of this binding curve assay platform is com-

parable to those at the National Institutes of Health Molecular Library

Screening Centers, making it a practical method in screening compound

libraries for novel ligands and for system-wide affinity profiling of

proteins, viruses, or whole cells against diverse molecular targets.

INTRODUCTION

B
iomolecular microarrays have emerged as a leading high-

throughput technology for system-wide biology such as

genomics,1–3 proteomics,4–11 glycomics,12–18 and small

molecule drug discovery.19–26 By immobilizing thousands

or tens of thousands of molecular targets as distinct features on a

solid support and simultaneously exposing all the targets to a probe

solution of interest, chemical reactions of the probe with the targets

are assayed at the same time. In situ synthesis is used to produce

high-density peptide and oligonucleotide microarrays.27 For major-

ity of biomolecules including cDNA, proteins, carbohydrates, lipids,

and small molecule compounds, contact-printing techniques are

employed to fabricate target microarrays on chemically functiona-

lized glass slides.28,29 Printed microarrays easily have 10,000 to

35,000 features (or spots) over an area of 8 to 20 cm2. The significance

of these large target microarrays to system-level biology is obvious

considering that the human genome has 25,000 protein-encoding

genes,30,31 the yeast proteome has 6000 proteins,5,32 libraries of re-

combinantly expressed immunoglobulins (IgG) are typically of the

order of 10,000 or smaller,33,34 and libraries of small molecule

compounds typically have 104–106 molecules.

So far, most microarrays are detected with fluorescence scanners,

wherein solution-phase probe molecules are modified with a fluores-

cent label or an affinity tag before incubation with the microarray.

After the incubation under specific conditions (e.g., probe concentra-

tion, incubation time, temperature, and secondary reaction of affinity

tags), the unbound probes are removed by washing before the ‘‘re-

acted’’ microarray is read with a fluorescence scanner. Such ‘‘endpoint’’

measurements do not provide information on reaction kinetic rate

constants (the true measure of binding affinity) and the results may

vary significantly when the target density on a microarray varies, a

common occurrence for printed microarrays. Furthermore, depending

upon the reaction rate constants, the reaction endpoints can vary as

incubation conditions change. For example, relative affinity assess-

ment based on endpoint fluorescence intensity often assumes that

probe-target complexes increase linearly with time up to the end of

incubation and that the complexes survive postreaction washing.

Without the information on the association rate constants a priori, one

needs to confirm experimentally the linear regime before the endpoint

data can be so interpreted. In addition, without the information on

dissociation rate constants, one cannot properly assess those probe-

target complexes that do not survive post-incubation washing. The

remedy to these drawbacks associated with endpoint assays is to ob-

serve binding reactions in real-time instead. In this case, one measures

binding curves of the probe to immobilized targets during association

and dissociation phases of reactions and extracts reaction rate con-

stants from these curves as characterizing parameters of probe-target
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interactions. We will show as is expected that measurements of

binding kinetic constants are independent of target density variation

in a microarray. Furthermore from binding curves, one can assess

other issues such as avidity, heterogeneity, mass transport, and con-

formational changes that are difficult to address by endpoint assays.

Fluorescence-based methods are seldom used for real-time binding

curve measurements due to photobleaching suffered by many fluo-

rescent tags and the potential effect of these tags on intrinsic associ-

ation and dissociation rate constants.35 Label-free optical biosensing

methods, such as surface plasmon resonance reflectometry (SPR),36–42

reflection interference spectroscopy,43–45 dielectric wave guide re-

flectometry,46–49 and imaging ellipsometry,50–54 complement fluo-

rescence-based detection by doing away with labeling and providing

both endpoint and kinetic measurements of binding reactions. How-

ever, these biosensors only detect a small number of reactions (no

more than a few hundred reactions) at a time and often require special

(and costly) sensor surfaces. As a result, they are not suitable for large

microarray detection with 10,000 or more immobilized targets.

In this report we demonstrate an ellipsometry-based optical sensor

platform capable of simultaneous measurement of binding curves of

a probe with 10,000 targets immobilized on a functionalized glass

slide. This development advances microarray technology from an

endpoint assay to a true binding affinity assay platform with a po-

tential to assay over 50,000 targets in one day.

The summary of this detection platform is illustrated in Fig. 1. Mo-

lecular targets expressing specific epitopes are immobilized in form of a

microarray on an epoxy-functionalized glass slide using a contact-

printing robot. The unprinted surface is blocked with macromolecules

that do not express the epitopes. By incubating the microarray in a

solution of protein probes that specifically recognize the epitopes, the

probes become captured by the immobilized targets, causing the

thickness d or coverage H or generally the surface mass density C (gm/

cm2) of the immobilized target layer to change. The endpoint and/or

real-time evolution of such a change lead to extra changes in magnitude

and phase of an incident monochromatic light beam upon reflection

from the glass surface. We directly measure the extra magnitude change

Dr and extra phase change Dd as fluorescenceless measures of the

protein-target binding reactions.

METHODS AND MATERIALS
Oblique-Incidence Reflectivity Difference Scanning
Microscope

Our optical sensor platform for large microarray detection is a

scanning optical microscope based on polarization-modulated

oblique-incidence reflectivity difference (OI-RD).26,55–57 It does not

require specially structured substrates such as gold films or dielectric

waveguides for detection, and has a large ‘‘field of view’’ (presently

*10 cm2). It is thus fully compatible with large microarrays printed

on inexpensively functionalized glass slides. Compared to imaging

ellipsometers based on polarizer-compensator-sample-analyzer

schemes,50–54 the OI-RD scanning microscope is inherently more

sensitive to surface-bound changes (e.g., thickness and mass density)

by more than one order of magnitude.58

The arrangement of our scanning OI-RD microscope used in

this work is briefly described here (Fig. 2). A scan lens focuses a

polarization-modulated He-Ne laser beam (k = 633nm) to a 30-mm-

diameter spot on the back surface of a glass slide printed with a target

microarray. The incidence angle is h = 36.6� in the glass slide. The back

surface is in contact with an aqueous solution in a fluidic chamber.

Images of the microarray are obtained by raster scanning the beam

across the back surface at a step size of 20mm with a combination of a

galvanometer mirror and the scan lens along the y-axis and by moving

the microarray fluidic assembly relative to the beam along the x-axis

with a linear stage. Image ‘‘contrast’’ is based upon the polarization

change of the laser beam upon reflection from the back surface,50,52

described by the ratio of reflection coefficients for p- and s-polarized

components of the beam, rp/rs = tanw$exp(id). An OI-RD scanning

microscope directly measures the polarization change. When solution-

phase probes bind to immobilized targets on the glass surface, the

surface mass density (mass per unit area) of the target layer C changes

and in turn alters rp/rs. When the target, the probe, and the glass slide

are transparent at the optical wavelength k, the change in C primarily

alters the phase d (see Supplementary Data for detailed description of

Dd measurement; Supplementary Data are available online at

www.liebertonline.com/adt) as follows,55,59,60
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es, e0, and ed are the optical dielectric constants of the glass slide, the

aqueous solution, and the probe-target layer, respectively. q = 1.35 g/

Fig. 1. Summary of a scanning ellipsometry-based detection of
endpoints and real-time association–dissociation curves of protein
probes with surface-immobilized targets in form of a large micro-
array on an epoxy-functionalized glass slide. The changes in
thickness d and coverage H or surface mass density C of the target
layer as a result of binding reaction cause extra changes in mag-
nitude (Dr = r - r0) and phase (Dd = d - d0) of an incident light beam
(E0) upon reflection from the target-covered surface. r0 and d0 are
magnitude and phase changes due to reflection from the ‘‘bare’’
glass surface in the absence of the target-probe layer. The present
ellipsometry-based detection platform measures Dr and Dd in real-
time from all immobilized targets.
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cm3 is the volume mass density of globular proteins.61 With typical

values of es = 2.31, e0 = 1.77, and ed = 2.03, a probe-target layer with

C = 1 ng/mm2 yieldsDd = - 2.3 · 10 - 3. The current limit of our OI-RD

microscope is jDdj*2 · 10 - 5, corresponding to a surface mass

density of protein probes in the order of *10 pg/mm2. It is not yet as

sensitive as surface-plasmon-resonance or waveguide-based sensors

since we have not yet utilized the resonance-like enhancement factor

1/(cot2 y- es/e0) in Equation (1). However, the high throughput and

low operation cost of the OI-RD scanning microscope for compound

screening are the major merits when compared to these other label-

free detection methodologies.

For simultaneous measurement of binding curves of a probe to

thousands of immobilized targets, we perform repeated scans of a

subset of pixels on the microarray surface as follows. We select one

pixel from each target spot as the signal channel and two pixels from

the unprinted region on two sides of the target as the reference

channels. Each reference channel is shared by two neighboring signal

channels. The signal and reference pixels along vertical and hori-

zontal lines form a rectangular readout grid. For a 9216 (64 · 144)

spot microarray, the readout grid has 9216 target channels and 9,360

reference channels. We scan these channels in every 20–70 s. The

optical signal Dd from a signal channel minus the averaged optical

signal from the two neighboring reference channels yields the

background-corrected signal for the target. This procedure com-

pensates for instrumental drift, ambient refractive index changes,

and flow-induced signal transients. The time series of the background-

corrected signal from a target collected during the course of a reac-

tion form a binding curve of the probe against the target.

Microarray Targets and Probes
Targets. Bovine serum albumin (BSA), human IgG (HM), mouse IgG

(MS), rabbit IgG (RB), and polyclonal goat IgG against human/

mouse/RB (GT anti-HM, GT anti-MS, and GT anti-RB) were

purchased from Jackson ImmunoResearch Laboratories. Metham-

phetamine-BSA, tetrahydrocannabinol-BSA, and morphine-BSA

conjugates were purchased from Biodesign International. Theo-

phylline-BSA, phenobarbital-BSA (PB-BSA), and digoxin-BSA

were purchased from Fitzgerald Industries International, Inc.

Metallothionein (Metal) and biotin-N-hydroxysuccinimidyl ester

(NHS-biotin ester) were purchased from Sigma-Aldrich.

We prepared biotin-BSA (B-BSA) conjugates by reacting NHS-

biotin ester with a BSA solution in 0.1 M NaHCO3. The loading of

biotin was controlled by the molar ratio of the NHS-biotin ester to

BSA that ranged from 5 · , 10 · , 20 · , up to 40 · . Excess free biotin

was removed by dialysis. We prepared iminobiotin-BSA conjugates

similarly. We made 2,4-dinitrophenol-BSA conjugates with a pre-

viously described method.25 We also made glucose-BSA and malt-

ose-BSA by reductive amination at pH 8.0.62

Probes. Monoclonal mouse anti-biotin IgG was purchased from

Jackson ImmunoResearch. Monoclonal mouse anti-methamphet-

amine, anti-tetrahydrocannabinol, anti-phenobarbital, and anti-

theophylline IgG were purchased from Biodesign. Monoclonal

mouse anti-morphine IgG was purchased from Fitzgerald In-

dustries. Polyclonal goat anti-2,4-dinitrophenol was purchased

from Sigma-Aldrich. Concanavalin A was purchased from Vector

Laboratories.

Microarray Fabrication and Reaction
Microarrays of 9216 (64 · 144) or 10,880 (68 · 160) targets were

printed on epoxy-functionalized glass slides (ArrayIt Corporation)

using an OmniGrid 100 contact-printing robot (Digilab). Each

microarray covers a 2 cm · 4 cm area. A printed microarray without

further processing was installed in a fluidic chamber assembly (Fig.

2) and imaged with the OI-RD scanner before exposed to a buffer

solution. The large optical signals from printed materials including

Fig. 2. (a) Optical layout of the scanning OI-RD microscope. A
functionalized glass slide with a microarray printed on the bottom
surface is installed in a fluidic chamber assembly. An illumination
laser beam is raster swept across the microarray with a scan mirror
assembly for y-scan; a linear translation stage moves the fluidic
chamber assembly with respect to the illumination optics in the
orthogonal direction for x-scan. (b) The fluidic chamber assembly
showing the 2 cm · 4 cm accessible area of the glass slide. (c) Side
view of the microscope illustrating the y-scan. OI-RD, oblique-in-
cidence reflectivity difference.
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the buffer salts were used (i) to align the

microarray axes to the scan axes and (ii) to

generate a rectangular readout grid for real-time

binding curve measurement and image analysis

(see Supplementary Data for details). It takes

18 min to acquire an OI-RD image of an 8-cm2

area with a pixel size (scan step size) of

20 mm · 20 mm. The microarray was then washed

in situ by passing several milliliters of

1 · phosphate buffered saline (PBS) buffer

through the fluidic chamber and imaged again

for a record of the target density. Next, the

washed microarray was exposed to a solution of

7.6 mM BSA (0.5 mg/mL) in 1 · PBS for 30 min to

quench unreacted epoxide groups to prevent

nonspecific binding of subsequent probes to the

unprinted surface. After BSA blocking, the mi-

croarray was kept in 1 · PBS and ready for

binding reactions.

All binding reactions were performed at

ambient temperature (nominally 25�C). For

each reaction, we first passed 1 · PBS buffer

through the fluidic chamber at 0.01 mL/min for

30 min to acquire the baseline. Next, the buffer

was quickly replaced with a probe solution at

5 mL/min for 12 s. The flow rate of the solution

was then reduced to 0.01 mL/min to allow the

probe to react with the microarray at a constant

concentration for 30–60 min (association phase

of the reaction). Afterward, the probe solution

was quickly replaced with 1 · PBS buffer at

5 mL/min for 12 s. The flow rate of the buffer

was subsequently reduced to 0.01 mL/min to

allow the captured probe to dissociate from the

microarray for 60 or 90 min (dissociation phase

of the reaction). We acquired OI-RD images of the microarray be-

fore and after the reaction. During the reaction, we repeatedly

scanned the readout grid every 20–70 s to acquire binding curves

from all targets. We note that if the association and/or dissociation

for some of the reactions take minutes or less to finish, the asso-

ciation–dissociation curves of these reactions (much fewer than

10,000) can be revisited on a separate but same microarray in a

‘‘cherry-picking’’ mode with a time step as short as a few seconds,

limited only by how quick the buffer is replaced by the probe so-

lutions and vise versa.

RESULTS AND ANALYSIS
Binding Curves of a Protein Probe to a Microarray
with 9216 Identical Targets

To demonstrate simultaneous detection of *10,000 binding

curves with the OI-RD scanning microscope, we performed the

reaction of mouse anti-biotin IgG with a microarray with 9216

identical B-BSA targets. The targets were printed from a B-BSA

solution at 1.6 mM in 1 · PBS. Figure 3 shows the OI-RD image of

the microarray in 1 · PBS after excess printed material was washed

off. The surface mass density of the target layer averaged over the

Fig. 3. OI-RD image of a biotinylated BSA microarray (64 · 144 spots) acquired after the
microarray is washed with 1 · PBS buffer. The image pixel size is 20 mm and the center-
to-center spacing of the spots is 250 mm. The inset is a magnified view that displays the
discrete readout points (red crosses) used during real-time experiments. PBS, phos-
phate buffered saline.

Fig. 4. (a) 288 out of 9,216 simultaneously acquired OI-RD measurements of anti-biotin IgG (33 nM) binding to biotinylated-BSA micro-
arrays. After a 30-min baseline measurement, the association reaction was monitored for 60 min (probe solution flowed starting at
t = 0 min) and the dissociation reaction was monitored for 90 min (buffer solution flowed starting at t = 60 min). (b) Anti-biotin IgG binding
curve sets (33 nM, 100 nM, and 300 nM) were acquired separately with fresh microarrays. For global curve fitting analysis of the data,
binding curves from corresponding spot locations in each dataset are collected together as shown here (red curves = 33 nM, green
curves = 100 nM, blue curves = 300 nM).

‰
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spot is 3.0 – 0.5 ng/mm2, corresponding to a full monolayer of B-

BSA (a side-on oriented BSA monolayer has a surface mass den-

sity56 of *2 ng/mm2). The variation within a spot is – 1.3 ng/

mm2. Figure 4a displays 288 of 9216 simultaneously acquired

binding curves at the MS concentration of C = 33 nM in 1 · PBS.

Each curve records the change in OI-RD signal and in turn,

through Equation (1), the change in surface mass density of the

probe-target layer. The average surface mass density of captured

IgG molecules at saturation is 5 ng/mm2, so that on average every

two immobilized B-BSA molecules captured one IgG molecule.

This is the first report where binding curves were recorded for

*10,000 features in a microarray in a single measurement. By

repeating the binding curve measurement at the MS concentra-

tions of C = 100 nM and 300 nM in two separate measurements, we

obtained 9216 sets of binding curves, each set corresponding to

the probe reaction with a distinct target at three probe concen-

trations. Figure 4b displays 288 of 9216 binding curve sets.

The 9216 binding curve sets were analyzed to yield the reaction

kinetic rate constants using the Langmuir reaction model. In this model

solution-phase probes are assumed to bind to surface-immobilized

targets at a rate proportional to the probe concentration C, konC. The

captured probes can dissociate from probe-target complexes at a rate

koff, independent of C. When the probe solution is introduced to the

microarray at t = 0 and then replaced with 1 · PBS at a later time t = t0,

the number of captured probes per unit target area is

N (t) = N0 �
konC

konC + koff
1 - e - (konC + koff )t
� �

(2a)

for t < t0 and

N (t) = N0 �
konC

konC + koff
(1 - e - (konC + koff )t0 )e - koff (t - t0)

(2b)

for t > t0. N0 is the maximum number of probes

that can be captured per unit target area. It de-

pends on factors such as the target density,

geometric shapes and orientations of targets and

probes. The surface mass density C in Equation

(1) is proportional to N(t) and as a result Dd(t) =
c · N(t). c is a function of optical parameters

displayed in Equation (1), and the volume mass

density and molecular weight of the probe. We

extract reaction rate constants kon and koff by

fitting binding curve sets to Equations (2a) and

(2b) simultaneously. Generally, N0 varies from

spot to spot in a microarray and from microarray

to microarray due to variation in wetting prop-

erties across a functionalized glass surface and in

the liquid delivery of contact printing. As a re-

sult, we treat N0 as a fitting parameter that may

vary from curve to curve within a set while

treating kon and koff as common (global) pa-

rameters to all three curves of the set.63–65 Details are described in

Supplementary Data.

We computed the equilibrium association constants Ka = kon/koff

from the fitting parameters kon and koff for all 9,216 reactions. In

Figure 5, we display Ka of mouse anti-biotin IgG reaction with 9216

B-BSA targets in the same layout as the target microarray (Fig. 3).

This is the first equilibrium association constant map obtained from

simultaneous measurement of 9216 binding curves on a microarray

platform. Except for the upper-right corner of the microarray where

the binding curves showed little dissociation (due to the insufficient

buffer flow from left to right during the dissociation phase), the

equilibrium association constants have a mean of 0.43 nM - 1 and a

standard error of – 0.13 nM - 1, or Kd = 1/Ka = 2.3 nM – 0.7 nM. Since

the targets are of the same material, the standard error represents the

uncertainty if a single B-BSA spot in a microarray is used to measure

the equilibrium association constant to the probe. Given the inherent

variations in contact-printed microarrays as described previously,

the precision of this high-throughput kinetic constant assay is re-

markably satisfactory. The slight decrease in Ka in Figure 5 from left

to right is presumably the result of the depletion effect. The result can

be used to quantify the depletion effect along the length of the sample

chamber.

Binding Curves of Multiple Probes to a 10,880-spot
Microarray with Different Targets Printed Over a Range
of Concentrations

We applied this binding kinetic constant assay to a 10,880-spot

microarray with a diversity of 24 target types, each printed in con-

centrations ranging from 0.5 mM to 16 mM so that the target density

Fig. 5. Experimental equilibrium association constants Ka of mouse IgG (MS) anti-biotin
probe binding to 9216 B-BSA targets, displayed in the same layout as the target mi-
croarray (Fig. 3). The equilibrium association constant at each microarray address is
determined by Ka = kon/koff, where kon and koff are the global fitting parameters deter-
mined from the corresponding binding curve set (Fig. 4). IgG, immunoglobulins.
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changes intentionally by a factor of 20. Figure 6 shows the OI-RD

image of such a microarray in 1 · PBS after excess printed materials

were washed off. The microarray consists of 16 identical subarrays,

with the 24 targets in each subarray laid out as shown in the inset of

Figure 6. Each target was printed in quadruplicate and at six printing

concentrations, changing two-fold from 16 mM

to 0.5 mM. The targets include (i) B-BSA with dif-

ferent amounts of conjugated biotin, (ii) carbo-

hydrate-BSA conjugates (glucose and maltose),

(iii) drug-BSA conjugates, and (iv) whole IgG

molecules. Border columns and rows were prin-

ted with BSA at 1.6 mM as controls. The real-time

readout grid consisted of a total of 10,240 target

channels (some BSA rows were skipped) and

10,880 reference channels, and was raster scan-

ned every 22 s to obtain 10,240 binding curves.

The microarray was reacted sequentially

with multiple protein probes. They were, in order

of reaction, anti-phenobarbital IgG, concanava-

lin A (lectin), anti-theophylline IgG, anti-biotin

IgG, anti-tetrahydrocannabinol IgG, anti-

morphine IgG, anti-dinitrophenol IgG, and anti-

methamphetamine IgG. The reaction sequence

was repeated on separate fresh microarrays to

obtain binding curve sets for four probe con-

centrations of 300 nM, 100 nM, 33 nM, and

11 nM. The binding curve measurement con-

sisted of a 30-min baseline in 1 · PBS, a 30-min

association phase in a probe solution, and a 60-

min dissociation phase in 1 · PBS under the same

flow conditions as described previously.

In Figure 7, we show the Ka map of anti-biotin

IgG reactions with 10,880 targets. In Figure 8, we

show the Ka map of anti-phenobarbital IgG re-

actions with the same 10,880 targets. Zooming in

on one subarray, we note that except for targets

printed at the highest concentration of 16 mM

(see Sun et al.,25 who reported that at high

printing concentrations and thus high im-

mobilized target densities, the association rate of

a solution-phase protein probe to the surface-

bound targets deviates considerably from the

rate obtained at lower printing concentrations,

partly due to stereo-hindrance effect), Ka = 0.53

nM - 1 of anti-biotin IgG to immobilized B-BSA is

essentially the same even when both the target

density and the amount of captured IgG mole-

cules vary by a factor of 10–20. The magnitude is

very close to the bulk value of 0.59 nM - 1 re-

ported by Jung et al.66 and is 2.5 times the value

reported by Adamczyk et al. in an SPR mea-

surement.67 The Ka of anti-phenobarbital IgG to

immobilized PB-BSA is similarly independent of

the target density, and its value of 2.7 nM - 1 compares well with the

affinity constant of *20 nM - 1 for monoclonal mouse anti-drug IgG

molecules available from Fitzgerald Industries International, Inc.

(www.fitzgerald-fii.com/Products?pId9&sId = 21). This validates the

notion that reaction rate constants obtained from global fitting

Fig. 6. OI-RD image of a ligand microarray (68 · 160 spots) acquired after washing the
microarray with 1 · PBS buffer, but before further reaction of the microarray. The image
pixel size is 20mm and the center-to-center spacing of the spots is 250 mm vertically and
225 mm horizontally. The red lines in the top panel show the outlines of 16 identical
subarrays and the inset shows the detailed spot layout of each. Each target type was
printed in quadruplicate in six different printing concentrations ranging from 16 mM (left)
to 0.5mM (right). BSA borders and unprinted spots are also included as controls. B-BSA,
biotin-BSA; Dig, digoxin; DNP, 2,4-dinitrophenol; Glc, glucose; GT a-HM, polyclonal goat
IgG against human IgG; GT a-MS, polyclonal goat IgG against MS; GT a-RB, polyclonal
goat IgG against rabbit IgG; HM, human IgG; IB, iminobiotin; Mal, maltose; Metal,
metallothionein; Meth, Methamphetamine; Morph, morphine; PB, phenobarbital; RB,
rabbit IgG; THC, tetrahydrocannabinol; THP, Theophylline.
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binding curves are not and should not subject to ubiquitous target

density variation in a contact-printed microarray and is independent

of which pixel within a printed spot is used for binding curve mea-

surement. It confirms that our present microarray-based kinetic

constant assay is a robust platform for characterizing protein-ligand

affinity. Similar findings for the other protein

probes are described in Supplementary Data.

DISCUSSION AND CONCLUSION
Microarray-based binding assays have so far

been successfully applied to parallel studies of

multiple biomolecular interactions,10,17,68 partic-

ularly to screening molecular libraries for protein

ligands of interest.5,11,18,23,24 This platform will

profit enormously from real-time binding curve

detection capability that directly yields reaction

rate constants (intrinsic characteristics of bio-

molecular interactions) with essentially the same

throughput. Since extraction of kinetic rate con-

stants from binding curve sets is insensitive to the

immobilization target density, binding curve as-

says solve the problem of target density variation

that often plagues microarray-based endpoint

assays. As a bonus, OI-RD images of a target mi-

croarray acquired before and after BSA blocking

in fact provide a label-free measure of the target

density.56 Furthermore, binding curve assays de-

tect those probe-target reactions with high dis-

sociation rates that are easily missed in endpoint

assays as a result of post-incubation washing. Though not elaborated

here, real-time binding curves reveal other concurrent or sequential

processes such as dissociation or conformational change of targets

and the presence of multiple configurations of probe-target com-

plexes (due to multiple binding pockets on a probe or multiple

binding site presentation of the immobilized

target) that are essentially beyond the reach of

endpoint assays.

As to whether the present binding constant as-

say platform has the suitable throughput for large-

scale molecular library screening, we observe that

with one OI-RD scanning microscope, we can ob-

tain binding curves of one protein probe to 50,000

targets (immobilized as 4 microarrays) at one

concentration in one day. With three such OI-RD

scanning microscopes, we can obtain 50,000 sets of

binding curves at three probe concentrations to

yield Ka of the probe to the 50,000 targets in a day.

This means that we should be able to measure the

equilibrium association constants of a single probe

to 250,000 molecular targets in one week. This

promises a new era for massive parallel charac-

terization of biomolecular interactions.

We recently immobilized 8,000 drug-like small

molecules (from NCI/DTP) on isocyanate-func-

tionalized glass slide surfaces and screened these

compounds for ligands of vascular endothelial

growth factor (VEGF) with inhibitory effect

against VEGF-KDR binding reaction using this

Fig. 7. Experimental equilibrium association constants Ka of MS anti-biotin probe
binding to 10,880 targets, displayed in the same layout as the target microarray
(Fig. 6). The white lines show the outlines of the 16 identical subarrays and the 4 · 6
blocks of spots printed with different concentrations of a particular target type.

Fig. 8. Experimental equilibrium association constants Ka of MS anti-phenobarbital
probe binding to 10,880 targets, displayed in the same layout as the target microarray
(Fig. 6). The white lines show the outlines of the 16 identical subarrays and the 4 · 6
blocks of spots printed with different concentrations of a particular target type.
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microscope. The result demonstrated that the method described in

this article would work equally well for drug-like compounds as

surface immobilized targets.
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SUPPLEMENTAL MATERIALS 

OI-RD Scanning Microscope Control 

Microscope control, data acquisition, image processing/analysis, binding curve 

processing/analysis (nonlinear curve fitting), and report generation are performed with a custom 

application suite developed in LabVIEW 7 (National Instruments, Austin, TX) by ourselves. 

Microarray Printing Conditions 

The microarrays were printed at ambient temperature (~ 25°C) and elevated relative humidity 

(~ 65%).  The target materials were dissolved in 1 PBS (pH 7.5) to desired concentrations for 

printing. Primary amines on the target protein surface bind covalently to the epoxide groups on the 

glass surface. The printing robot was equipped with eight silicon 100 μm quill pins (Parallel 

Synthesis, Santa Clara, CA). The centers of the printed spots were separated by 250 m and the 

diameters of the spots varied from 80 m to 160 m depending on the concentration and the wetting 

properties of the printed solution. The printed microarrays were stored in a slide box for a minimum 

of 12 hours before further processing. 

aK  Maps of Eight Protein Probes Against the 10,880-spot Target Microarrays Shown in Fig. 5 

We measured binding curves of eight protein probes against the 10,880-spot target 

microarray (Figure 5) by sequentially exposing the microarray to solutions of these probes at one 
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concentration. In order of reactions, the 8 protein probes were anti-phenobarbital IgG, concanavalin 

A (lectin), anti-theophylline IgG, anti-biotin IgG, anti-tetrahydrocannabinol IgG, anti-morphine IgG, 

anti-dinitrophenol IgG, and anti-methamphetamine IgG. We repeated the reaction sequence with 

different probe concentrations on fresh microarrays to obtain 10,880 sets of binding curves for each 

printed target. Figure S-1 through Figure S-8 display Ka maps (equilibrium association constants) of 

these eight proteins against the 10,880 targets, representative sets of binding curves for each probe, 

and the histogram of Ka for each probe against the same specific targets but printed at different 

locations. We show the means and the standard deviations of the association rates, dissociation rates, 

and equilibrium association constants of eight specific probe-target pairs in Table 1. 

It is clear that there is noticeable cross reactivity of mouse anti-theophylline IgG to 

dinitrophenol-BSA targets, albeit with an order of magnitude smaller Ka. For concanavalin A, in 

addition to specific binding to glucose-BSA targets, the protein also binds to a number of 

immobilized IgG targets. 
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FIGURE S-1 
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FIGURE S-2 
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FIGURE S-3 
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FIGURE S-4 
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FIGURE S-5 

 
 

 



 - 8 - 
 

FIGURE S-6 
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FIGURE S-7 
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FIGURE S-8 
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TABLE S-1:   Association rates, dissociation rates, and equilibrium association constants of eight 
protein probes with respective ligands (Figure 5). The values are 68% confidence intervals obtained 
from the mean and standard deviation of a Gaussian distribution fit to a histogram of values from all 
appropriate microarray spots (several hundred spots for each reaction). Values for each spot were 
obtained from nonlinear curve fitting to the Langmuir binding reaction model. We estimate from the 
data a 68% confidence upper bound for the dissociation rate (the association and dissociation rates 
must be nonnegative) where appropriate. They are comparable in value to the available affinity 
constants for some of monoclonal mouse anti-drug IgG molecules that Fitzgerald Industries 
International, Inc. provides commercially (http://www.fitzgerald-fii.com/Products?pId=9&sId=21). 
 
 

Probe Target kon (M·s)-1 koff (s
-1) Ka (nM-1) 

anti-phenobarbital IgG phenobarbital-BSA (1.3 ± 0.1) 104 < 4.810-6 > 2.7 

concanavalin A glucose-BSA (2.3 ± 0.3) 104 (8.7 ± 0.9) 10-5 0.26 ± 0.01

 whole IgG (1.00 ± 0.07) 104 (2.2 ± 0.4) 10-5 0.45 ± 0.07

anti-theophylline IgG theophylline-BSA (3.4 ± 0.3) 104 < 2.810-6 > 11 

 dinitrophenol-BSA (3.4 ± 0.3) 104 (9 ± 3) 10-5 0.36  ± 0.01

anti-biotin IgG biotin-BSA (2.2 ± 0.2) 104 (4.5 ± 0.5) 10-5 0.53 ± 0.06

anti-tetrahydrocannabinol IgG tetrahydrocannabinol-BSA (1.1 ± 0.2) 104 < 9.110-6 > 1.2 

anti-morphine morphine-BSA (2.1 ± 0.2) 104 < 6.910-6 > 3.0 

anti-dinitrophenol dinitrophenol-BSA (1.8 ± 0.1) 104 < 7.210-6 > 2.5 

anti-methamphetamine methamphetamine-BSA (1.6 ± 0.2) 104 (2.2 ± 0.4) 10-5 0.72 ± 0.1 
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Measurement of Reflectivity Phase Difference   

In this section, we provide details on how the OI-RD microscope measures the changes in the 

reflectivity phase  , where   irr sp exptan   and pr  and sr  are the complex p-polarized and s-

polarized reflectivities, respectively.  This microscope varies in several details from previously 

reported OI-RD microscopes1-4. In particular, this microscope is designed to measure changes in   

exclusively (previous microscopes can also measure changes in  ). Since the OI-RD response with 

optically transparent substrates and protein layers is predominantly through  , the current 

microscope configuration sacrifices very little information in exchange for a simpler and more 

robust signal normalization scheme compared to previous OI-RD microscopes. However, it should 

be pointed out that the high-speed scanning mechanisms are independent of these details and 

therefore high-throughput kinetic measurements analogous to those described in the main text can be 

performed with the previous OI-RD configurations as well. 

The arrangement of the optics in the OI-RD microscope is illustrated in Figure 1 and (for 

convenience) Figure S-9 (top). A He-Ne laser beam of wavelength λ = 633 nm and linearly 

polarized at angle P (from p-polarization) passes through a photoelastic modulator (PEM). The 

photoelastic modulator acts as a waveplate with a sinusoidally varying retardation of frequency Ω = 

50 kHz and amplitude 2  (quarter wave). The axes of the PEM are aligned with the glass slide p- 

and s-polarization components.  The beam passes through a phase shifter (e.g. a wave plate tilted 

about a principal axis) that adds an adjustable but static phase PS  between the p- and s-polarized 

components. The scan lens focuses the beam into a ~ 30 µm diameter spot on the microarray-bearing 

glass surface at incidence angle  6.36  inside the glass slide. The microarray-bearing surface is 

immersed in an aqueous solution within the flow channel.  The reflected beam from the illuminated 

spot passes through an analyzer with its transmission axis set at angle A (from p-polarization) and is 

imaged with an objective lens onto a long-profile photodiode. A slit in front of the photodiode passes 

the image from the back surface reflection and blocks the images from the front surface reflection 

and from multiple bounces within the glass slide. The first and second harmonic components of the 

resulting photocurrent are measured with lock-in amplifiers. Their signed amplitudes are  
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            sysPSsp APrrHJIS   sin2sin2sin10  (S-1) 

for the first harmonic and  

            sysPSsp APrrHJIS   cos2sin2sin22 20  (S-2) 

for the second harmonic. The other symbols in these expressions are as follows: 0I  is the output 

intensity of the laser; 1J  and 2J  are Bessel functions of the first kind; H  is the frequency-dependent 

proportionality between the laser intensity amplitude at the photodiode and the measured 

photocurrent amplitude; pr  and sr  are the products of the p- and s-polarization 

reflection/transmission coefficient magnitudes for all the surfaces in the system (including the 

microarray surface);   is the phase difference between the p- and s-polarized components due to 

reflection from the microarray surface; PS  is the phase difference due to the phase shifter; and sys  

is the phase difference due to all the other components. Let     2maxmax SS  where 

         APHJIS 2sin2sin10max             APHJIS 2sin2sin22 20max   . The parameter 

  is independent of the properties of the microarray surface and can be determined by measuring the 

amplitudes of  S  and  2S  plotted as a function of PS . This only needs to be done once 

because those factors that do not divide out in the ratio remain constant throughout use of the 

microscope. With these definitions      sysPSsp rrSS   sin2max  and 

     sysPSsp rrSS  cos22 max . Next, let 0  be the phase difference for a bare (unprinted) 

region of the microarray surface. We initially adjust PS  so that 00  sysPS  (or, more 

generally, a multiple of  ), giving   0S  and     sp rrSS  22 max .  When a thin layer of 

molecules is subsequently added to the bare surface or when the focused beam is moved to a 

microarray spot, the photocurrent amplitudes become      0max 2   sp rrSS  and 

    sp rrSS  22 max . Therefore, under this “nulling” condition of the first harmonic, the phase 

difference 0   is obtained from the measured amplitudes by      2SS  . Before 

each image or real-time scan, the first harmonic is “nulled” as described above at a reference 

location on the unprinted microarray substrate. 
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FIGURE S-9 

 
 

 

 

Top panel: Optical layout of the scanning OI-RD microscope. A glass slide with a 
microarray printed on the bottom surface is installed in a flow channel assembly. A 
polarization-modulated laser beam is scanned across the microarray in the y-direction 
for y-scan with a combination of a rotating mirror and a scan lens, while the flow 
channel assembly is translated in the x-direction relative to the illumination optics for x-
scan. Middle panel: bottom view of the flow chamber assembly showing the 2 cm  4 
cm optically accessible area on the glass slide. Bottom panel: side view of the 
scanning microscope illustrating the y-scan. 
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Optimizing Spot Locations for Real-time Readout 

For fast real-time readout, it is essential that the encoded linear translation stage (x-direction in 

Figure 1 and Figure S-9) does not stop much more often than the number of columns in a 

microarray.  As a result, it is crucial that the centers of printed spots along a microarray column (fast 

scan direction, y direction) do not deviate from a straight line by more than the spot radii so that the 

fast rotating mirror raster scan can be performed at one x-coordinate per microarray column, instead 

of many x-coordinates for a single column of targets. Three factors affect this: (1) the diameter and 

morphology of printed spots, (2) the precision of the printing robot, and (3) the regularity of pin 

diameters and pin-to-pin separation in the print head. Item (1) is the most variable because it 

depends on the physicochemical properties of the glass slide surface, the printing buffer, and the 

dissolved target. For example, in the first experiment described in the main text the printed BSA 

spots had diameters ranging from 120 m to 140 m. In the second experiment, the range was even 

larger when printing concentrations were varied. By printing a large microarray with a single pin 

(data not shown), we found that the standard deviation of the spot spacing was 9 m due to robotic 

motion precision, close to the nominal 2.5 m digital encoder resolution of the OmniGrid 100 

translation motors. For high-throughput printing of many replicate microarrays (up to 100), multiple 

pins must be employed. Since a readout line needs to pass through all the spots in a column printed 

with different pins so that the encoded linear stage only needs to stop once for the row, the centers of 

the pins in the print head cannot deviate from a straight line by more than the spot radius. Typical 

stainless steel pins used in most robotic microarray printers do not have such a precise pin-to-pin 

alignment. We found that silicon pins and the associated print head from Parallel Synthesis Inc (San 

Jose, CA) had the pin-to-pin alignment precision for our application.  Our printing test showed that 

the standard deviation of spot centers printed with 8 silicon pins was 11 m, so that 99 % of the 

printed spot centers will fall within 55 m, less than one half of the spot diameter. This regularity in 

spot center position allows convenient specification of the readout grid and in turn enables high-

speed real-time readout. 
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OI-RD Image Processing 

The goal of microarray image analysis is to report the amount of probe-target complex formed 

at each spot of the microarray. For fluorescence images, this goal is achieved with the following 

strategies: (1) determine a grid for addressing each spot, (2) segment spot pixels from background 

pixels, (3) determine if a given spot location contains a valid endpoint signal, and (4) calculate the 

signal from the spot pixels and the local background.  These strategies remain the same in principle 

for OI-RD images of large microarrays, yet differ significantly in implementation. First, 

fluorescence signals are represented by non-negative values (typically unsigned 16-bit integers and 

expressed in instrument-dependent arbitrary units). The OI-RD signals may take positive and 

negative values and although the raw OI-RD signals are acquired by digitizing an analog signal (at 

16-bit resolution), the signals have an instrument-independent physical interpretation according to 

Eq. (1) (see the main text). Thus, it is most useful to process the OI-RD signals as floating-point 

values. 

A second important difference is the nature of the background signals in these two types of 

microarray images. Fluorescence, by its nature, allows sensitive discrimination of appropriately 

labeled molecules. Background from autofluorescence, nonspecific binding, and artifacts such as 

smearing of target molecules during washing steps (“comet tails”) inevitably occur, but can be 

minimized in principle by optimizing the microarray fabrication and reaction protocols. After 

gridding and segmenting spot pixels, the typical approach to quantifying fluorescence endpoints is to 

subtract an average of the local background pixels from an average of the spot pixels.  In contrast, all 

label-free optical detection methods, including OI-RD and surface plasmon resonance imaging, are 

subject to all processes that can change the phase and magnitude of a reflected optical beam. Thus, 

for OI-RD images, it is important to correct (subtract out) the background both globally and locally 

before assessing the signal of a target spot. 

The third important difference is that gridding and normalization of the spot signals are often 

the most difficult step in fluorescence image analysis. This is because the image quantifying the 

target microarray is usually unavailable; the structure of the grid and the target density of each spot 
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must be deduced from one or more probe reactions. For OI-RD images, it is routine to obtain high-

contrast images of a target microarray (either before or after washing away excess printed material) 

before reaction with a probe. As a result, the target spots are relatively easily located and gridded, 

greatly aiding the process of background correction necessary for OI-RD images (the most difficult 

step in OI-RD image analysis). We next describe the semi-automated procedures used to process OI-

RD images acquired for this study. 

 

Grid Determination 

The printed, yet unprocessed microarray is installed in the microscope and scanned. The 

reflectance signal sspp RRRR   , with 
2

pp rR   and 
2

ss rR   (available as the second harmonic 

of the polarization-modulated laser intensity in reflection), from the spots are large with almost 

negligible background. A line is drawn between the centroids of the bottom-left and bottom-right 

spots in the microarray (see Figure 2, main text) to determine the angle of the microarray relative to 

the scan axes. Angular deviations larger than one milliradian are corrected by rotating the fluidic 

chamber assembly with a flexure-tilt mechanism. 

First iteration readout grid.   Once the microarray axes are aligned with the scan axes, the 

reflectance signals sspp RRRR    are added up along the y-axis (image pixel columns) to obtain 

a comb-like profile of x-coordinates, and the same signals are added up along the x-axis (image pixel 

rows) to obtain a comb-like profile of y-coordinates. The peak positions in these two profiles mark 

the average coordinates of printed spots on a rectangular grid, albeit irregularly spaced. These 

positions are found by fitting a quadratic equation to the profile points located in a sliding window. 

The fit coefficients are tested to see if the quadratic is consistent with a local maximum of sufficient 

height and width, and if so the peak location is calculated. These peak positions in x and y 

coordinates form the first iteration of the real-time readout grid.  After the target channel pixels (grid 

points) are located, the reference channel pixels are determined by computing the midpoint between 

consecutive targets in the y (fast scan) direction; references at the edges of the arrays are positioned 

approximately half a spot spacing away. 
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Second iteration readout grid.   If there is a great deal of variability in the spot diameters and 

the locations of the spot centroids, the average coordinates as specified in the first-iteration readout 

grid can miss a significant number of target spots. In this case, we make the following adjustments: 

The reflectance image is globally binarized (with thresholds set to the global image mean ± one 

standard deviation) to segment out the spots. The image is then partitioned into rectangles centered 

on the original grid points, each containing a binarized target spot. We shift the readout coordinates 

for the spot from the geometrical center of the rectangle to the centroid of the binarized spot (if a 

spot is not present, the center of the box is used). These shifted coordinates form the second iteration 

readout grid.  Our scanning software can read out this “center-of-mass relaxed” grid in real-time, and 

the algorithm works extremely well for small microarrays. But for large microarrays with 10,000 

spots such a “center-of-mass relaxed” readout grid with a nearly random distribution of pixel 

positions is inefficient due to the large number of distinct x coordinates (up to 10,000 from less than 

200) where the encoded linear stage needs to stop. 

Third iteration readout grid.   Thus for large microarrays, we choose the median of the 

“center-of-mass relaxed” x coordinates for each column of the printed targets (parallel to y axis) as 

the x-coordinate for the entire row, thus reducing the number of distinct target x coordinates from 

potentially 10,000 back to the number of target rows. Since scanning along the y direction is 

accomplished with a fast scan mirror, the unique y values can be kept without significant increase in 

total readout time. For operational reasons though, we sometimes choose the median of the “center-

of-mass relaxed” y coordinates as the y-coordinates for a column of printed targets. 

 

Background Correction 

In order of decreasing length scale, the background signals in an OI-RD image (the   phase 

signal from the measurement of the first harmonic of the reflected laser beam in polarization 

modulation frequency) are: (1) a monotonic and nearly linear component arising from the change in 

incidence angle with respect to the scan mirror surface; (2) mechanical strain in the glass substrate 

(recall the substrate is used as a window to the flow cell); (3) inhomogeneity on the glass surface and 
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chemically functionalized surface coating; and (4) stochastic pixel-to-pixel noise. Nominally, 

backgrounds (1)-(3) are static in time and are unaffected by a reaction of the microarray. Thus, the 

simple means of background correction is to subtract an image taken before a reaction from an 

image taken after the reaction, revealing the change due only to the reaction (plus noise). However, 

in practice these backgrounds (particularly item (2)) slowly drift in time, leaving a residual 

background in the difference image that must be corrected. Furthermore, if one desires to extract 

quantitative information from a target image, these backgrounds must be corrected. Generally, our 

background correction results are more accurate and robust for difference images due to smaller 

background signals. 

We start with reducing background (1) by modeling it with a 3rd-order two-dimensional 

polynomial and subtracting it pixel-by-pixel from the image. Let us denote the original  image as 

Image-0. Because the image is large, we do not wish to perform a computationally expensive least-

squares calculation on all of the pixels. Thus, we first create a coarse-grained version of Image-0, 

which we will denote as Image-1. To obtain Image-1, we interpolate each row of pixels in Image-0 

with cubic splines, select a sparse set of regularly spaced points along the rows (e.g. one tenth of the 

original pixel density along both directions), and evaluate the interpolating functions at these new 

locations; the process is then repeated for the other direction (pixel columns). On Image-1, we then 

apply simple thresholds (global image median ± three median absolute deviations) to crudely 

segment out the strongest microarray spots and artifacts (air bubbles, scratches, dirt) remaining in the 

coarse grained image. We least squares fit the coarse grained image globally to a 3rd-order two-

dimensional polynomial, excluding the segmented pixels from the previous step. The resulting 

polynomial is then subtracted from the original image (Image-0), pixel-by-pixel, to arrive at the 

globally treated image (Image-2). This essentially removes the slow varying background (1) and 

centers the residual background (2) about zero. By using a cubic-spline interpolation instead of a 

simple averaging method for the coarse graining, we can utilize the entire image including the 

margins and thus improve the quality of this step. 
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The line profiles along the rows and columns of Image-2 (obtained after the above polynomial 

global treatment) indicate that the remaining background is well modeled locally by, for example, 

5th-order polynomials.  Thus, we next partition the image into smaller blocks (typically 2 to 5 mm on 

a side) and within each partition least-square fit a one-dimensional 5th order polynomial to each 

column and/or row in the block. However, pixels from the microarray spots and other artifacts 

erroneously affect the fit; as a result, they need to be excluded from the fit. We have employed three 

methods to this end: (A) for high signal-to-noise spots, a crude global threshold may suffice. In this 

case, we compute the median (M-2) and the median absolute deviation (MAD-2), and use M-2 ± 

3×MAD-2 to obtain a binary mask for exclusion of the microarray spots and other artifacts.  

Unfortunately, this does not always work well; (B) alternatively, we use a binary mask from global 

thresholding the differential reflectance image ( sspp RRRR   ) of the dry microarray (before 

washing) to exclude these pixels. This data is readily available, but it less convenient than other 

methods because it requires an extra registered image; (C) in practice, it is convenient to use Image-

2 and the following strategy. The signals from microarray spots of Image-2 typically have the same 

sign (i.e. all spots are positive relative to local background) and the spot diameters are no more than 

half of the center-to-center spot spacing. A grayscale morphological top hat transformation5 can be 

applied to it as follows. For every pixel, we replace the value by the minimum of all pixels within a 

square that is centered at the pixel in question and with a side width a little larger than the spot 

diameter; afterward we replace the value of a pixel with the maximum of all pixels again within the 

same sized square centered at the pixel of interest. This procedure removes the microarray spots and 

other small features (e.g. dirt and small bubbles) from Image-2 and replaces them with values close 

to the nearby background. The resulting image (Image-3) contains the background of length scales 

down to twice the size of the square. We subtract Image-3 from Image-2 to eliminate the background.  

We then find the median (M-4) and the median absolute deviation (MAD-4) of the resulting image 

(Image-4) to obtain a binary mask (thresholds set at MAD-4 ± 3×MAD-4). The mask is used to 

exclude the microarray spots and artifacts and enables us to perform within each partition the least-

square fit to a one-dimensional 5th order polynomial for each column and/or row in the block. By 
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subtracting the polynomial fit from Image-2 for each partition, we arrive at the final background-

corrected image (Image-5). This method of automatically generating a mask from the image itself 

with the top hat transformation was applied to all images acquired for this study. 

 

Spot Detection 

After the locations of spots have been determined and the background has been subtracted, it 

remains to compute the “endpoint signal” for each spot and whether the signal suggests marking the 

spot “hit”, “no reaction”, or some other appropriate classification. This means we need to segment 

spot pixels from the substrate pixels as in previous steps, but do a better job of segmenting artifact 

pixels from spot pixels. We note that, after applying the above background subtraction procedure, 

most spots can be successfully segmented from the background by globally applying thresholds 

equal to image median ± three median deviations. In general, spot signals range from the detection 

limit (i.e. the standard deviation of the noise in the unprinted region of the glass surface) up to the 

detector saturation level. In our microarray images, the spot diameters are no more than half the 

center-to-center spot spacing and we generally image a wide margin around the microarray edge to 

improve the background correction. Thus, spot pixels comprise at most ~ 20% of the image pixels.  

In the histogram of signals from all pixels, the signals from the background pixels form a Gaussian 

peak with zero mean and the signals from the spot pixels are essentially outliers (with the exception 

of spots near the limit of detection). The use of the median and the median absolute deviation allows 

the center and dispersion of the background signal distribution to be accurately estimated despite the 

variable, large outliers (i.e. spot and artifact pixels). To reduce the number of false positives while 

keeping most weak spots, we apply an improved segmentation procedure based upon local 

thresholding as follows. 

We first apply a noise-reducing filter to the image, such as a 3×3 Gaussian convolution mask 

or a 3×3 median filter. The filters reduce false positives from the stochastic noise and small 

punctuate artifacts (the latter are suppressed particularly well by the median filter), and the blurring 

of the spot edges due to filtering has little impact on spot pixel segmentation.  We then use the target 
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readout grid to partition the microarray into rectangular boxes, each (potentially) containing a spot 

and its surrounding background. Since the spot pixels comprise no more than 20% of the pixels 

within each partition, we computed for each partition the upper and lower thresholds equal to the 

partition median (Mp) ± three median absolute deviations (3×MADp). Pixels between the thresholds 

are considered background pixels while pixels outside the thresholds are considered potential spot 

pixels. As an option, if many spot pixels are nearby but disconnected, morphological closing can be 

applied to connect them. Likewise, morphological opening can be used to eliminate isolated single 

pixels. We next go through each partition and keep only the largest connected “binary region” (the 

smaller binary regions are likely to come from noise or artifacts). We then go through the binary 

regions and keep only those with an average radius greater than a specified threshold (a good value 

can be independently measured from the original dry target image of the microarray). Finally, we 

eliminate those remaining binary regions that lie too close to the partition boundaries (because 

genuine spots should be closer to the center of the partitions). If a partition has a surviving binary 

region, then we flag the target or the spot in the partition as a “hit candidate”. The binary region is 

used as the mask to determine the spot pixel and background pixel statistics of each partition in the 

unfiltered but background corrected image. Thus, we now have a background corrected image, a 

target readout grid, a spot mask for segmenting out the spot pixels, and spot signals, which can be 

used to create useful rules for scoring “hits”. For instance, we often print replicate spots of a 

particular target in adjacent microarray addresses. We might score a particular target as a “hit” if a 

majority of the adjacent replicate spots were flagged as “hit candidates” and the median of the spot 

signals is within acceptable thresholds. 

 

Implementation of Global Curve Fitting 

We developed a global curve fitting procedure to extract kinetic parameters of the binding 

reaction model from ~10,000 binding curve sets in an efficient and automated manner. Our goal is to 

match the throughput of the data analysis to the throughput of the binding curve acquisition. After 

real-time data is collected, the data acquisition software compensates the raw signals, zeroes the 



 - 23 - 
 

baselines, records the probe concentration, and records the times where association and dissociation 

measurements begin. Additionally, the software records instrumental noises from the baselines, 

endpoint signals near the completion of the association and dissociation phases, and the 

corresponding signal-to-noise ratios (endpoint signals divided by baseline noise). After acquiring 

binding curves for all probe concentrations of interest, we select the binding data files to be fit, a 

binding model, and a signal-to-noise threshold to determine which curve sets should be fit. The rest 

of the process is carried out automatically. First, binding curves from the same microarray spots (but 

typically different probe concentrations) are collected into sets.  If the median endpoint signal-to-

noise ratio of the curve set exceeds a user-set threshold, then the curve set will be fit to the binding 

model. We use the Levenberg-Marquardt algorithm6 to find reaction model parameters that 

minimize the sum of square errors (SSE) between the model and all the curves in the set 

simultaneously (global curve fitting). We observe that the instrumental noise is independent of 

endpoint signals; as a result, we weight all data points in all curves equally in the global fit. For the 

one-to-one Langmuir binding model used in this study (Eq. (2a) and Eq. (2b)), common values of 

onk  and offk  are applied to all curves in a given set (global fit parameters), while 0N  is allowed to 

vary for each curve (local fit parameter); the probe concentrations C  and dissociation starting times 

0t  were recorded for each curve at the time of data acquisition. We also restrict onk  and offk  to 

positive values. The association and dissociation portions of the binding curves are fit 

simultaneously. Initial guesses for the fit parameters are obtained from a heuristic piecewise linear 

fit of the curves. Separate linear fits of the association and dissociation measurements converge 

reliably and give order of magnitude estimates of the rate constants onk  and offk ; 0N  is also 

estimated from these fits, or alternatively, from the association-phase endpoint signal. This 

initialization method allows the iterative Levenberg-Marquardt algorithm to proceed without human 

input and independent of the units of measurement (scaling) of the time and OI-RD values.  The 

Levenberg-Marquardt algorithm iterates until the change in the sum of square errors falls below a 

threshold. To make the termination threshold independent of the signal scale, we set it equal to a 

constant (~ 6101  ) times the maximum curve endpoint signal in the set. To increase the likelihood 
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that the output parameter values give a global rather than a local minimum of the sum of square 

errors, the heuristic initial values are randomly perturbed and input to the Levenberg-Marquardt 

algorithm; the output parameter set with the smallest sum of square errors is retained.  The 

perturbations are drawn from zero-mean Gaussian distributions with standard deviations equal to the 

heuristic parameter value. In the present study, this was performed ten times per set of binding 

curves. More trials are rarely needed with the Langmuir model, keeping the time needed to fit ~ 

10,000 curve sets to ~ 1 hour using our current computer software and hardware.  Analysis time can 

be further reduced by fitting batches of curve sets in parallel using modern multi-core computer 

processors. Finally, we observe that the instrumental noise in the baseline is distributed normally, 

allowing us to estimate the uncertainties of the output fit parameters using the diagonal elements of 

the Levenberg-Marquardt output covariance matrix and the final root mean square error of the fit. 

Numerical simulations of Langmuir kinetics (Figure S-10 and Table S-2 for a reaction with 

significant dissociation and Figure S-11 and Table S-3 for a reaction with little dissociation) with 

Gaussian noise and random values of 0N  (to simulate the variability of microarray printing) 

demonstrates that our global curve fitting procedure successfully extracts meaningful values for onk , 

offk , and 0N  even for low signal-to-noise ratio (< 5) data. After curve fitting, the output value for 

the off-rate, offk , is further assessed as described below. 
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FIGURE S-10 

 
 

 

 

Simulated binding curves mimicking experimental data for mouse IgG reaction with biotin 
targets. The time interval between successive points is 25 s. The kinetic parameters are kon 
= 2 10-5 (nMs)-1 and koff = 4 10-5 s-1. Curves were calculated for probe concentrations at 
300 nM (red curves), 100 nM (green curves), 33 nM (blue curves), and 11 nM (violet 
curves). For the “Uniform Scale” panel, a scale factor of 0N  = 1.5 10-2 was assumed. 

For the “Scale A”, “Scale B”, and “Scale C” panels, random values of 0N  where drawn 

from a uniform distribution on the interval [5 10-3, 2.5 10-2] for each probe concentration. 
From highest to lowest probe concentration, the values used for “Scale A” are 1.92 10-2, 
1.62 10-2, 1.36 10-2 and 1.15 10-2; for “Scale B”, 1.52 10-2, 2.02 10-2, 1.26 10-2, and 
7.09 10-3; for “Scale C”, 1.33 10-2, 9.20 10-3, 2.41 10-2, and 1.44 10-2. For each set of 
scales, curves were calculated with additive Gaussian noise with means of zero and 
standard deviations of 5 10-5, 2 10-4, 4 10-4, 8 10-4, 1.2 10-3, 2.4 10-3, and 2.4 10-3. 
The black curves show the results of globally fitting the four simulated binding curves 
wherein kon and koff are shared fit parameters, but  is allowed to vary from curve to curve. 
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TABLE S-2:  Global fitting parameters obtained from simulated binding curves (Figure S-10). 
For each scale and noise level, the set of four simulated binding curves was globally fit wherein 
kon and koff were shared fit parameters, but γN0 was allowed to vary from curve to curve. The 
signal-to-noise ratio is calculated using SNR = 1.5 10-2/Noise, where 1.5 10-2 is the mean 
value of γN0. Noise is the standard deviation of the zero-mean additive Gaussian noise in the 
simulated data.  In this case both the fitted dissociation rate constants and the association rate 
constants are not dominated by the noise even at SNR = 6 or below. 

 
Scale Noise SNR kon (nM·s)-1 koff (s

-1) Kd (nM) 

Uniform 0  210-5 410-5 2 

 5 10-5 300 1.996 ± 0.00410-5 4.00 ± 0.0110-5 2.004 ± 0.008 

 2 10-4 75 1.97 ± 0.0110-5 3.99 ± 0.0610-5 2.02 ± 0.03 

 4 10-4 38 1.98 ± 0.0310-5 4.2 ± 0.110-5 2.11 ± 0.07 

 8 10-4 19 2.05 ± 0.0610-5 3.5 ± 0.210-5 1.7 ± 0.1 

 1.2 10-3 13 1.99 ± 0.0910-5 3.9 ± 0.410-5 2.0 ± 0.2 

 2.4 10-3 6 1.9 ± 0.210-5 5.3 ± 0.710-5 2.7 ± 0.4 

 7.5 10-3 2 1.9 ± 0.510-5 < 410-5 < 2.1 

A 0  210-5 410-5 2 

 5 10-5 300 2.004 ± 0.00310-5 4.00 ± 0.0110-5 1.997 ± 0.007 

 2 10-4 75 2.00 ± 0.0110-5 3.97 ± 0.0510-5 1.99 ± 0.03 

 4 10-4 38 1.99 ± 0.0210-5 4.0 ± 0.110-5 2.02 ± 0.06 

 8 10-4 19 1.91 ± 0.0510-5 4.1 ± 0.210-5 2.1 ± 0.1 

 1.2 10-3 13 1.92 ± 0.0710-5 3.8 ± 0.310-5 2.0 ± 0.2 

 2.4 10-3 6 2.2 ± 0.210-5 4.4 ± 0.610-5 2.0 ± 0.3 

 7.5 10-3 2 2.0 ± 0.510-5 < 3.110-5 < 1.6 

B 0  210-5 410-5 2 

 5 10-5 300 2.006 ± 0.00310-5 3.98 ± 0.0110-5 1.982 ± 0.007 

 2 10-4 75 2.02 ± 0.0110-5 4.02 ± 0.0610-5 1.98 ± 0.03 

 4 10-4 38 1.99 ± 0.0210-5 3.9 ± 0.110-5 1.95 ± 0.06 

 8 10-4 19 1.93 ± 0.0510-5 4.3 ± 0.210-5 2.2 ± 0.1 

 1.2 10-3 13 2.17 ± 0.0810-5 3.5 ± 0.310-5 1.6 ± 0.2 

 2.4 10-3 6 2.1 ± 0.210-5 3.3 ± 0.610-5 1.6 ± 0.3 

 7.5 10-3 2 2.3 ± 0.510-5 4 ± 210-5 1.6 ± 0.9 

C 0  210-5 410-5 2 

 5 10-5 300 1.999 ± 0.00410-5 4.02 ± 0.0210-5 2.011 ± 0.009 

 2 10-4 75 2.03 ± 0.0210-5 4.03 ± 0.0610-5 1.98 ± 0.04 

 4 10-4 38 2.06 ± 0.0410-5 3.7 ± 0.110-5 1.79 ± 0.07 

 8 10-4 19 1.93 ± 0.0710-5 4.6 ± 0.210-5 2.4 ± 0.2 

 1.2 10-3 13 2.0 ± 0.110-5 4.1 ± 0.410-5 2.0 ± 0.2 

 2.4 10-3 6 1.9 ± 0.210-5 3.7 ± 0.710-5 1.9 ± 0.4 

 7.5 10-3 2 1.5 ± 0.510-5 1.0 ± 0.210-5 7 ± 3 
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FIGURE S-11 

 
 

 

 

Simulated binding curves mimicking the anti-phenobarbital data. The kinetic parameters 
used are kon = 1 10-5 (nMs)-1 and koff = 8 10-7 s-1. All other simulation parameters are 
the same as for Figure S-10. 
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TABLE S-3:   Global fitting parameters obtained from the simulated anti-phenobarbital binding 
curves in Fig. S-11. For each scale and noise level, the four simulated binding curves were globally 
fit wherein kon and koff, were shared fit parameters, but γN0 was allowed to vary from curve to curve. 
The signal-to-noise ratio is calculated using SNR = 1.5 10-2/Noise, where 1.5 10-2 is the mean 
value of γN0. Noise is the standard deviation of the zero-mean additive Gaussian noise in the 
simulated data. It is clear that in this case study, the fitted dissociation rate constants are dominated 
by the noise even with SNR < 300, while the fitted association rate constants are not. 

 

Scale Noise SNR kon (nM·s)-1 koff (s
-1) Kd (nM) 

Uniform 0  110-5 810-7 0.08 

 5 10-5 300 1.003 ± 0.00210-5 5 ± 210-7 0.05 ± 0.02 

 2 10-4 75 9.92 ± 0.0810-6 < 1.010-6 < 0.11 

 4 10-4 38 9.8 ± 0.210-6 3 ± 110-6 0.3 ± 0.1 

 8 10-4 19 1.06 ± 0.0310-5 < 4.410-6 < 0.42 

 1.2 10-3 13 9.2 ± 0.410-6 < 6.010-6 < 0.65 

 2.4 10-3 6 1.0 ± 0.110-5 < 1.410-5 < 1.4 

 7.5 10-3 2 8 ± 210-6 < 3.910-5 < 5 

A 0  110-5 810-7 0.08 

 5 10-5 300 9.99 ± 0.0210-6 9 ± 110-7 0.09 ± 0.01 

 2 10-4 75 1.000 ± 0.00710-5 1.5 ± 0.610-6 0.15 ± 0.06 

 4 10-4 38 1.00 ± 0.0110-5 < 1.710-6 < 0.17 

 8 10-4 19 9.8 ± 0.310-6 < 3.410-6 < 0.35 

 1.2 10-3 13 1.02 ± 0.0410-5 < 4.810-6 < 0.47 

 2.4 10-3 6 8.9 ± 0.710-6 < 1.010-5 < 1.2 

 7.5 10-3 2 9 ± 210-6 < 3.410-5 < 3.8 

B 0  110-5 810-7 0.08 

 5 10-5 300 9.96 ± 0.0210-6 1.0 ± 0.110-6 0.10 ± 0.01 

 2 10-4 75 9.91 ± 0.0710-6 1.9 ± 0.610-6 0.19 ± 0.06 

 4 10-4 38 1.00 ± 0.0210-5 < 2.010-6 < 0.20 

 8 10-4 19 1.02 ± 0.0310-5 < 4.010-6 < 0.40 

 1.2 10-3 13 1.04 ± 0.0510-5 < 6.010-6 < 0.58 

 2.4 10-3 6 1.04 ± 0.0910-5 < 1.110-5 < 1.1 

 7.5 10-3 2 1.4 ± 0.410-6 < 3.810-5 < 2.8 

C 0  110-5 810-7 0.08 

 5 10-5 300 9.98 ± 0.0210-6 9 ± 210-7 0.10 ± 0.02 

 2 10-4 75 9.98 ± 0.0910-6 < 1.210-6  < 0.12 

 4 10-4 38 9.7 ± 0.210-6 < 2.510-6 < 0.26 

 8 10-4 19 9.7 ± 0.410-6 < 4.910-6 < 0.51 

 1.2 10-3 13 1.09 ± 0.0610-5 < 7.210-6 < 0.66 

 2.4 10-3 6 1.0 ± 0.110-5 < 1.510-5 < 1.5 

 7.5 10-3 2 6 ± 210-6 < 4.010-5 < 6.3 
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Estimation of an Upper Bound for the Dissociation Rates of High-Affinity Binders 

A most important use of kinetic rate constants obtained from real-time binding curves is the 

determination of the equilibrium association constant Ka, given by Ka = kon/koff. Ka is the measure of 

the binding affinity between a probe and a target.  Often the difference in Ka comes mainly from the 

difference in koff rather than kon. That is, high-affinity binding reactions have low values of koff and 

vice versa. 

For reactions with equilibrium association constants Ka larger than 10 nM-1, (i.e., Kd less than 

0.1 nM), we only report the 68% confidence upper bounds (the Langmuir kinetic parameters must be 

nonnegative). The reason is as follows: When the change in optical signal due to probe dissociation 

over the observation time of dissociation phase (60 minutes in this experiment) is less than the 

background noise in the signal, the dissociation portion of the binding curve is essentially flat and as 

a result koff deduced from the curve-fitting is less than its standard deviation (determined by the noise 

from the curve-fitting). In this case, it is only sensible to use the standard deviation of koff to set an 

upper bound for koff. We next derive a simple algorithm for finding such an upper bound for the 

dissociation rate (and in turn the lower bound for the equilibrium association constants Ka). It is a 

function of the signal-to-noise ratio, the time duration of dissociation phase, and the data-sampling 

rate. This notion of establishing an upper bound for koff and in turn, an upper bound for Ka from 

experimental data applies to analysis of real-time binding curves obtained by other label-free 

techniques.  

For binding curve measurements, an observation time up to an hour is typical.  In comparison, 

the time for 10% of the bound probes to dissociate from the targets is 0.1/koff. For high-affinity 

reactions, 0.1/koff can be hours or even days. This poses a significant challenge for high-throughput 

binding curve measurement as the dissociation reaction observation time will need to be much less 

than 0.1/koff. In these cases, the dissociation portion of the binding curves will be more or less flat.  

Because the noise in the dissociation data is inevitable, the extraction of koff can be dominated by the 

noise, namely, the uncertainty of koff, rather than the fitting parameter. If the signal-to-noise ratio is 

too low, koff from the fitting routine may vary by orders of magnitude, depending on the fitting initial 
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conditions and the termination threshold. Furthermore, the uncertainty in the fitted koff may be larger 

than the fitted koff itself, indicating that the latter is meaningless and the former sets a meaningful 

upper bound for koff. We show that an upper bound for koff is given by 
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,  (S-3) 

 

where T  is the observation time for the dissociation phase of the binding reaction, N  is the number 

of evenly spaced measurement points of the dissociation curve,  0t  is the observed OI-RD signal 

at 0tt   (the beginning of the dissociation phase), and   is the standard deviation of the noise in the 

OI-RD signal. We note that T , N , and  0t  are readily available from the measurements. The 

instrumental noise   can be obtained from a reference baseline acquired before the association 

reaction begins. This relationship is also useful for designing dissociation experiments to achieve a 

particular upper bound, as discussed later. 

In this study, we measured ~ 10,000 antibody-antigen interactions with the dissociation curves 

mostly flat during one-hour observation of the dissociation phase.  Let the parameter values from the 

global curve be fit,onk  and fit,offk  and the respective uncertainties be on  and off . In a global curve 

fitting, these values are common to all the curves in the fitted set. The corresponding equilibrium 

dissociation constant is calculated as fit,fit,fit, onoffd kkK   with the uncertainty given by 

   2fit,
2

fit,fit, ononoffoffdd kkK   . We assume that the fit adequately describes the data such 

that the root mean square error (RMSE) evaluated using the fitting parameters is approximately 

equal to the instrumental noise, RMSE , and thus ononon kk  fit,  is a reasonable estimate of 

the association rate constant.  If there is a significant decay beyond the noise during the dissociation 

phase, then offoffoff kk  fit,  is a good estimate for the dissociation rate; otherwise, only an upper 

bound can be established.  To distinguish between these two cases, we calculate values of  i
offk max,  

using Eq. (S-3) for each curve Mi ,,1  (where M is the number of binding curves in a set used in 

the global fit). In these calculations, we approximate   using the RMSE calculated for the curve 
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under consideration. For each curve we then determine a value of  i
offk  such that    i

off
i

off kk max,  if 

 i
offoff kk max,fit,  , otherwise  

fit,off
i

off kk  . We assign   M

i

i
offoff kk

1best, min


  and fit,best,best, onoffd kkK  . If 

fit,best, offoff kk  , we report offoffoff kk  best,  and ddd KK  best, ; otherwise we report 

best,offoff kk   and best,dd KK  . 

We now consider some limiting cases.  If all binding curves exhibit significant decay beyond 

the noise level, we naturally have  
fit,off

i
off kk   for all the curves. This is because  i

offk max,  is calculated 

from the fit RMSE for each curve and thus  i
offoff kk max,fit,  . If all the binding curves in the 

dissociation phase are essentially flat, we arrive at   M

i

i
offoff kk

1max,best, min


 . Since the values of 

 i
offk max,  are upper bounds for the true value of offk , it is sensible to report the smallest of all.  In this 

situation, the value for best,offk  is determined by the curve with the highest signal-to-noise ratio 

(    0~SNR t ) since the other parameters (T  and N ) are usually the same from curve to curve.  

In general, some  i
offk  are fit values and some are upper bounds. Clearly, if the minimum value of a 

mixed set is a fit value, then this fit value is self-consistent with upper bound values present in the 

set and therefore our prescription gives a sensible answer. If the minimum value of a mixed set is an 

upper bound, the interpretation needs caution. In this case, the data should be examined to see if 

there is a curve that is poorly described by the fit model due to experimental artifacts.  The 

questionable curves should be corrected or eliminated and the fit and the subsequent analysis should 

be reapplied. Lastly, we note that our prescription provides robust upper bounds even in the presence 

of uncorrected experimental artifacts in the data.  This is true because the RMSE value used in the 

prescription will generally be larger than the true value of the stochastic instrumental noise   due to 

the artifacts. Numerical demonstrations of the validity of the prescription are provided with 

simulated Langmuir binding data with Gaussian noise in Figure S-10, Figure S-11, Table S-2, and 

Table S-3. 
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Derivation of the Upper Bound max,offk  for Dissociation Rate Constant 

Here we derive Eq. (S-3) presented in the previous section. We also discuss the application of 

this equation to designing dissociation experiments.  According to Eq. (2b), the OI-RD signal during 

the dissociation reaction ( 0tt  ) is given by 

 

      0

0
ttkoffett     (S-4) 

 

where 

     0100
tkCk

offon

on offone
kCk

Ck
Nt 


  . (S-5) 

We now assume that offktt 10   during the entire length of the dissociation phase.  The hallmark 

of this condition is that the observed decay is linear. Thus Eq. (S-4) can be approximated as 

   0ttbat  , where  0ta   and   offktb  0 . The dissociation rate abkoff   can 

be obtained from a linear least squares fit of the dissociation data6. The linear least squares fit also 

yields estimates for the slope uncertainty  b  and intercept uncertainty  a , giving the 

uncertainty in the dissociation rate as        22 bbaakk offoff   , by propagation of errors. 

Let N  be the number of measurements (readouts) made during the dissociation reaction, t  be the 

time between successive measurements (readouts), and tNT  )1(  be the total duration of 

observation. Furthermore, let     be the uncertainty in each OI-RD observation (i.e. the 

instrumental noise). For large values of N (i.e. 20~N ), the standard equations for the 

uncertainties (see, for example, Eq. 6.23 in Reference 6) reduce to      NTb  32  and 

    Na  2 . Therefore the uncertainty in the dissociation rate constant is 
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 . (S-6) 
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If  offoff kabk  , only  offk  is meaningful and sets an upper bound for the true value of offk  

as 

 
  NTt
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.  (S-7) 

It is notable that all the parameters in this equation are obtainable from the data. If offon kCk  , 

   0100
CtkoneNt    in Eq. (S-7). Since 0N  is the OI-RD signal at the equilibrium, a useful 

definition of the signal-to-noise ratio of the data is  0SNR N . In this case, Eq. (S-7) can be 

rewritten as 

 

  02
3

1SNR

32
max, Ctkoff

oneT

t
k 


 .  (S-8) 

This form is useful for designing dissociation experiments. A smaller value of max,offk  gives a tighter 

bound on offk  and therefore Eq. S-8 makes it clear that short sampling periods, long observation 

times, and high signal-to-noise ratios are desirable, as intuitively expected. The smallest achievable 

sampling period t  is limited by the scanning hardware and the number of microarray spots to be 

read out; thus t  is not very convenient for tuning max,offk . It should be pointed out that smoothing 

the data, such as by convolution or median filters, to increase the apparent SNR does not reduce 

max,offk . This is because smoothing operations also increase the effective value of t  by a factor of 

the half-width of the smoothing window, canceling out the gain in SNR (which scales roughly as the 

square root of the window half-width). Therefore tuning max,offk  through SNR must come through 

boosting the signal, such as by increasing the surface density of binding sites 0N . Additionally, one 

can boost the signal by choosing probe concentration C or association reaction duration 0t  to bring 

the association signal near equilibrium ( 0~0Ctkone ). Lastly, one can choose to observe the 

dissociation reaction for a longer time.  Since t  is a constant for all practical purposes, Eq. (S-8) 

shows that 2
3

max,


 Tkoff . For example, a 100-fold decrease in max,offk  requires a 20-fold increase in 

observation time. 
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